Approximation by periodic spline interpolants on uniform meshes
نویسندگان
چکیده
منابع مشابه
Approximating partial derivatives of first and second order by quadratic spline quasi-interpolants on uniform meshes
Given a bivariate function f defined in a rectangular domain Ω, we approximate it by a C1 quadratic spline quasi-interpolant (QI) and we take partial derivatives of this QI as approximations to those of f. We give error estimates and asymptotic expansions for these approximations. We also propose a simple algorithm for the determination of stationary points, illustrated by a numerical example. ...
متن کاملNear minimally normed spline quasi-interpolants on uniform partitions
Spline quasi-interpolants are local approximating operators for functions or discrete data. We consider the construction of discrete and integral spline quasi-interpolants on uniform partitions of the real line having small infinite norms. We call them near minimally normed quasi-interpolants: they are exact on polynomial spaces and minimize a simple upper bound of their infinite norms. We give...
متن کاملIncreasing the approximation order of spline quasi-interpolants
In this paper, we show how by a very simple modification of bivariate spline discrete quasi-interpolants, we can construct a new class of quasi-interpolants, which have remarkable properties such as high order of regularity and polynomial reproduction. More precisely, given a spline discrete quasi-interpolation operator Qd, which is exact on the space Pm of polynomials of total degree at most m...
متن کاملApproximation by Baskakov quasi-interpolants
Baskakov operators and their inverses can be expressed as linear differential operators on polynomials. Recurrence relations are given for the computation of these coefficients. They allow the construction of the associated Baskakov quasi-interpolants (abbr. QIs). Then asymptotic results are provided for the determination of the convergence orders of these new quasi-interpolants. Finally some r...
متن کاملQuadratic Spline Quasi - Interpolants on Bounded Domains
We study some C1 quadratic spline quasi-interpolants on bounded domains ⊂ Rd, d = 1, 2, 3. These operators are of the form Q f (x) = ∑ k∈K () μk( f )Bk(x), where K () is the set of indices of B-splines Bk whose support is included in the domain and μk( f ) is a discrete linear functional based on values of f in a neighbourhood of xk ∈ supp(Bk). The data points x j are vertices of a unifor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1968
ISSN: 0021-9045
DOI: 10.1016/0021-9045(68)90055-5